Background story: holomorphic foliation

 $X :=$ smooth complex manifold. A **holomorphic foliation** F on X is a collection of charts: $\{\phi_i: U_{i_1}^{\subset X} \to V_i^{\subset \mathbb{C}^k} \times W_i^{\subset \mathbb{C}^{n-k}}\},$ s.t. $\phi_i \circ \phi_i^{-1}$ $j^{-1}(x, y) = (f(x), g(x, y)).$

A leaf of F is an immersed submanifold $L \subset X$ which has locally constant coordination w.r.t. V_i .

KORKAR KERKER SAGA

Ex: $f: X \rightarrow Y$ a submersion of complex mainfolds. Leaves: $f^{-1}(p),\ p\in Y$

Kロトメ部トメミトメミト ミニのQC

Frobenius theorem

A foliation F on X gives rise to a sub-bundle $T_F \subset T_X$ of holomorphic tangent bundle, which is **closed under** $[-, -]$. Conversely:

Theorem

A sub-bundle $\mathcal{T}'\subset \mathcal{T}_\mathcal{X}$ closed under $[-,-]$ gives rise to a holomorphic foliation on X.

Alternative description:

A quotient bundle $\Omega_X \rightarrow \Omega_F$ s.t. there is a map of cdga's

$$
\text{DR}(X) \twoheadrightarrow \big(\oplus^i \wedge^i \Omega_{\mathcal{F}}[i], \bar{d}_{DR}\big) := \text{DR}(\mathcal{F})
$$

Algebraic analogue

Lie algebroid $\mathfrak{g} \hookrightarrow \mathcal{T}_{X/\mathbb{C}}$ locally free \mathcal{O}_X module closed under $[-,-]$?
سبہ Algebraic foliation $\Omega_{X/\mathbb{C}} \twoheadrightarrow \Omega_{\mathscr{F}}$ quotient bundle, inducing maps of cdga's $\mathsf{DR}(X/\mathbb{C}) \twoheadrightarrow (\oplus_{i\geq 0} \wedge^i \Omega_{\mathscr{F}}[i], \bar{d}_{DR})$

Ex: Maximal destabilzing subsheaves of tangent bundles.

Question 1:How to compare (singular) Lie algebroids and algebraic foliations?

Integrability

Fact: not every algebraic foliation has algebraic leaf. Consider $\frac{dx}{x} + dy$ on $\mathbb{A}^2 - \{(0, y)\}.$

Question 2: How to say something about leaves? Question 3: How about positive characteristics?

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Adv. of Infinitesimal derived foliation

Features:

- ▶ a derived analogue of algebraic foliation **over any SCR**
- ▶ enjoy **formal leaves** described by formal moduli problems

- ▶ under some finiteness condition, equivalent to a sub- ∞ -category of **partition Lie algebroids**
- ▶ many examples
- Abbr: Inf.foliation for short.
- Tool: Refined Koszul duality.

Ex: Purely inseparable Galois Theory

Theorem (Brantner-Waldron)

Consider K/F a finite purely inseparable field extension in $charp > 0$. Then there is a cat equivalence bewteen

$$
{\begin{aligned}\{\text{intermediate fields } K \supset E \supset F, \text{ with morphism } \supset\}}\\ \Downarrow\\ \text{full subcategory } \mathcal{C} \subset \mathsf{LieAlgd}_{R/k,\Delta}^{\pi}\end{aligned}}
$$

KELK KØLK VELKEN EL 1990

where $\mathcal C$ is spanned by $\mathfrak g \to \mathbb{L}_{K/F}^\vee[1]$ s.t.

 $▶$ the anchor map $\pi_1(g) \to Der_F(K)$ is injective

$$
\blacktriangleright \pi_i = 0 \text{ for } i \neq 0, 1
$$

$$
\blacktriangleright \dim_K(\pi_0(\mathfrak{g})) = \dim_K(\pi_1(\mathfrak{g})) < +\infty
$$

Derived algebra monad: LSym

 $\text{Sym}^{\heartsuit} \curvearrowright$ Ab has non-commutative derived functor LSym^{cn} acting on $\mathsf{Mod}_{\mathbb{Z}}^{cn}$, which is the monad defining SCR's.

Theorem (Raksit, Brantner-Campos-Nuiten)

There is a unique sifted-colimit-preserving endo-functor $LSym \in End(Mod_{\mathbb{Z}})$ extending $LSym^{cn}$. Additionally, it is endowed with a canonical monad structure.

Remark

LSym also naturally acts on

Fil Mod $\mathbb{Z} := \text{Fun}(\mathbb{Z}_{>}, \text{Mod}_{\mathbb{Z}})$ $\text{Gr Mod}_{\mathbb{Z}} := \text{Fun}(\mathbb{Z}_{\text{dist}}, \text{Mod}_{\mathbb{Z}})$

KORK EXTERNE PROVIDE

Infinitesimal cohomology

Write $\text{Alg}_{\text{LSym}}(-)$ as $\text{DAlg}(-)$. Observe that

$$
\mathsf{Mod}_{\mathbb{Z}} \stackrel{\mathcal{F}^0}{\longleftarrow} \mathsf{Fil}_{\geq 0} \, \mathsf{Mod}_{\mathbb{Z}} \stackrel{\mathrm{Gr}}{\longrightarrow} \mathrm{Gr}_{\geq 0} \, \mathsf{Mod}_{\mathbb{Z}}
$$

are LSym-linear. Fact: for $k \in \mathsf{SCR}$,

$$
\mathrm{Gr}^0: \mathsf{DAlg}(\mathsf{Fil}_{\geq 0}\,\mathsf{Mod}_k) \to \mathsf{DAlg}(\mathsf{Mod}_k)
$$

admits a fully faithful left adjoint $\mathsf{F}_\mathsf{H}^*\mathbb{\Pi}_{-/ \mathsf{k}}$, called Hodge filtered infinitesimal cohomology.

$$
\mathrm{Gr}(\mathsf{F}_{\mathsf{H}}^*\mathbb{F}_{\mathsf{R}/\mathsf{k}})\simeq \mathrm{L}\mathrm{Sym}_R(\mathbb{L}_{R/\mathsf{k}}[-1])
$$

KELK KØLK VELKEN EL 1990

Function rings of inf.foliations

Set $\mathcal{D}_{R/k}^{\mathsf{Fil}}$ by a homotopy pullback of ∞ -category

$$
\mathcal{D}_{R/k}^{\text{Fil}} \longrightarrow \text{DAlg}(\text{Fil}_{\geq 0} \text{Mod}_k)
$$

$$
\downarrow \qquad \qquad \mathcal{G}_r^0 \downarrow
$$

$$
\{R\} \longrightarrow \text{DAlg}(\text{Mod}_k)
$$

Definition

 $A\in\mathcal{D}_{R/k}^{\mathsf{Fil}}$ is said to be foliation like if it is complete and

$$
\mathrm{Gr}(A) \simeq \mathrm{LSym}_R(\mathrm{Gr}^1(A)).
$$

.
◆ ロ ▶ → *덴 ▶* → 토 ▶ → 토 ▶ │ 토 │ ◆) 9, 0~

Here $\mathrm{Gr}^1(A)$ is called the cotangent complex of A. Ex: $\widehat{F_H \mathbb{F}_R}_{/k}$ is the initial foliation-like algebra for R/k Geometry of filtration and grading

Theorem (Moulinos)

$$
\mathsf{QC}(B\mathbb{G}_m)\simeq \mathrm{Gr} \text{ Sp}, \quad \mathsf{QC}([\mathbb{A}^1/\mathbb{G}_m])\simeq \mathsf{Fil} \text{ Sp}
$$

Definition

 \mathbb{G}_m – dSt_k is called ∞ -category of graded derived stacks.

Ex: For each $E \in \mathsf{Mod}_k$, the linear stack $\mathbb{V}(E)$ of E

 $\mathbb{V}(E)(A) := \mathsf{Map}_{\mathsf{Mod}_k}(E, A) \simeq \mathsf{Map}_{\mathsf{DAlg}_k}(\mathrm{LSym}_k\, E, A)$

KORKAR KERKER SAGA

is a graded stack by multiplication of k on E .

Graded mixed structure

 $\mathbb{D}^{\vee}_{-}:=\mathrm{LSym}_k(k[1])\simeq k\oplus k[1]$ can be regarded as a \mathbf{g} raded Hopf derived algebra, putting $k[1]$ at weight -1 . $\Omega_o\mathbb G_a=\operatorname{\mathsf{Spec}}(\mathbb D^\vee_-)$ admits a $\mathbb G_m$ -action by canonical multiplication.

$$
\mathcal{H}_\pi:=\mathbb{G}_m\ltimes \Omega_o\mathbb{G}_a
$$

Theorem

$$
\mathsf{QC}(B\,\mathcal{H}_\pi)\simeq \mathcal{LComod}_{\mathbb{D}^\vee}(\mathrm{Gr}\,\mathsf{Mod}_k)=:\mathsf{DG}_-\,\mathsf{Mod}_k
$$

KORKAR KERKER SAGA

Fact: DG₋ Mod_k \simeq Fil^{cpl} Mod_k, furthermore $\mathsf{DG}_ \mathsf{DAlg}_k := \mathsf{LComod}_{\mathbb{D}_-^\vee}(\mathop{\rm Gr}\nolimits \mathsf{DAlg}_k) \simeq \mathsf{Fil}^{\mathsf{cpl}}\mathsf{DAlg}_k$

Infinitesimal derived foliation

Definition (Toën-Vezzosi)

- $X := \operatorname{Spec}(R)$ over k. An inf.foliation consists of:
	- \blacktriangleright a \mathcal{H}_{π} -stack $\mathcal F$ over x
	- ▶ a \mathbb{G}_m equivaraint map $\mathcal{F} \to X$, which is equivalent to $\mathbb{V}(E) \to X$ the projection of some R-linear stack.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Theorem There is a fully faithful embedding

$$
Spec^{nc}: \mathcal{D}_{R/k,b}^{\mathcal{F}ol} \hookrightarrow (\mathcal{F}ol_{R/k}^{\pi})^{op}.
$$

Ex: Spec^{nc}($\widehat{F_\mathsf{H}^*\mathbb{H}_{\mathsf{R}/\mathsf{k}}}$) is the final inf.foliation on Spec(R),

$$
\mathcal{L}^{\text{gr}}_\pi(X/k):=\text{Map}_{\textbf{dSt}_k}(\Omega_o\mathbb{G}_a,X)
$$

KID KA KERKER KID KO

Naïve attemption to Koszul duality

$$
(\textsf{DAlg}_k)_/R \xrightarrow{\textsf{cot}_{k//R}} \textsf{Mod}_R \xleftarrow{\textsf{(–)}^\vee} (\textsf{Mod}_R)^{op}
$$

gives a monad $\mathcal{T}_{\mathsf{na\"ive}}:=(\mathsf{cot}_{k//R}\circ\mathsf{sqz}(-)^{\vee})^{\vee}$, but not s.c.p.

Question: Modify $T_{\text{naïve}}$ to have a s.c.p. monad, generalizing Kosuzl duality between commutative algebra and Lie algebra.

KID KA KERKER KID KO

Definition

An ∞ -category $\mathscr A$ is said to be **additive** if it has finite direct sums and $Ho(\mathscr{A})$ is additive. It has the followng module categories:

$$
\blacktriangleright \text{ Mod}_{\mathscr{A}} := Sp(\mathscr{P}_{\Sigma}(\mathscr{A}))
$$

- ▶ APerf $\mathcal{A} \subset \mathsf{Mod}_{\mathcal{A}}$ generated by \mathcal{A} under geom.realizations
- ▶ Coh_A ⊂ APerf_A spanned by eventually coconnective obj.

Definition

 $\mathscr A$ is said to be coherent if APerf_{$\mathscr A$} (and APerf_{$\mathscr A^{op}$})inherits the t-structure from $Mod_{\mathscr{A}}$ (Mod $_{\mathscr{A}^{op}}$). In this case, the ∞ -category of **pro-coherent** \mathcal{A} -modules is defined to be

$$
\mathsf{QC}_{\mathscr{A}}^{\vee} := \mathsf{Ind}(\mathsf{Coh}^{op}_{\mathscr{A}^{op}})
$$

KORKAR KERKER SAGA

Ex: modules over coherent SCR R

There is an adjunction

$$
\iota: \mathsf{Mod}_R \rightleftarrows \mathsf{QC}^\vee_R
$$

exhibits Mod_R as the right completion of QC^\vee_R . If R is eventually coconnective, $\mathrm{Perf}_R\subset \mathsf{Coh}_R$, thus $\mathsf{Mod}_R\subset \mathsf{QC}^\vee$.

The same holds for filtered/graded modules.

Ex: derived ∞-operad

Let R be ordinary comm.ring Symmetric sequences: $\text{seq}_R := \text{Fun}(B\Sigma, \text{Mod}_R)$. Ex: hom_E such that $hom_E(n) = \text{hom}(E^{\otimes n}, E)$

Set $R[\mathcal{O}_{\Sigma}]\subset \mathrm{sSeq}_R^{\heartsuit}$ spanned by $R[G/H]$'s and direct sums. Lemma. $R[O_{\Sigma}]$ is a coherent additive ∞ -category.

Definition

 $\mathrm{sSeq}_R^\vee := \mathsf{QC}_{R[\mathcal{O}_\Sigma]}^\vee$ is called the ∞ -categoryof $\mathsf{pro\text{-}coherent}$ genuine symmetric sequences

KORKAR KERKER SAGA

Extension of operations

Theorem ([BCN, Theorem 2.49])

There is a natural transformation of symmetric monoidal functors

sending each polynomial functor to its right-left derived functor. Proposition. There is a s.c.p. functor $SCR \rightarrow Add$ extending $R^{dist} \mapsto R[O_{\Sigma}].$

KORK EXTERNE PROVIDE

$\mathrm{sSeq}_{\pmb{\kappa}}^{\vee}$ has various monoidal structures

- ▶ Two symm.monoidal structure: ⊗ by Day convolution, ⊗lev
- ▶ Two composite tensor:

$$
X\circ Y\simeq \bigoplus_{r\geq 0} (X(r)\otimes_{\underline{R}} Y^{\otimes r})_{\Sigma_r}
$$

$$
X\,\bar{\circ}\,Y\simeq\bigoplus_{r\geq 0}(X(r)\otimes_{\underline{R}}Y^{\otimes r})^{\Sigma_r}
$$

▶ Indentifying QC $_{R}^{\vee}$ with arity 0 symm.seq., both $(\mathrm{sSeq}_{R}^{\vee}, \circ)$ and $\left(\mathrm{sSeq}_{R}^{\vee}, \bar{\circ}\right)$ acts on QC^{\vee}_R

Ex: Com(n) = $R[G/G] = R$ gives an algebra obj for both \circ and $\overline{\circ}$, defining derived comm.algebra and **derived divided power** algebra resp.

Linear dual

Proposition.

The linear dual $(-)^\vee$ is extended to QC^\vee_R , and gives rise to

 $\mathsf{APerf}_R\simeq (\mathsf{APerf}_R^\vee)^{op}$

Proposition.

Taking linear dual w.r.t \otimes_{lev} is lax-monoidal from \circ to $\overline{\circ}$. Specially, it takes ∞ -cooperads for \circ to ∞ -operads for $\overline{\circ}$.

Left-right derived functor:

Let $\mathscr A$ be a coherent additive ∞ -category and $\mathcal V$ an ∞ -category with sifted colimits. Then the restriction determines a commutative square

$$
\begin{array}{ccc}\n\mathsf{Fun}_{\Sigma}(\mathsf{QC}_{\mathscr{A}}^{\vee}, \mathcal{V}) & \xrightarrow{\simeq} \mathsf{Fun}_{\sigma, \mathsf{reg}}(\mathsf{APerf}_{\mathscr{A}, \leqslant 0}^{\vee}, \mathcal{V}) \\
\downarrow \downarrow & \qquad \qquad \downarrow \\
\mathsf{Fun}_{\Sigma}(\mathsf{Mod}_{\mathscr{A}}, \mathcal{V}) & \xrightarrow{\simeq} \mathsf{Fun}_{\sigma}(\mathsf{Perf}_{\mathscr{A}, \leqslant 0}^{\vee}, \mathcal{V})\n\end{array}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

where the horizontal functors have inverses given by left Kan extensions.

Categorical bar-cobar adjunction

Theorem (Lurie, BCN)

Let C be a pointed symm.monoidal ∞ -category, M is lefted tensored over C. Suppose both admits geom.realization and totalization. Then,

$$
LMod(\mathcal{M}) \xrightarrow[\text{co Bar}]{\text{Bar}} LComod(\mathcal{M})
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
Alg(\mathcal{C}) \xrightarrow[\text{co Bar}]{\text{Bar}} \text{co Alg}(\mathcal{C})
$$

KORK EXTERNE PROVIDE

here Bar preserves coCartesian edges.

 $\mathcal{C} := \big(\operatorname{sSeq}_R^{\vee}, \circ\big)$

 4 ロ) 4 何) 4 ヨ) 4 ヨ) 299 Ε

Refined Koszul duality

Fact: $P = \text{Com}^{nu}$ satisfies (†) reduced and $\text{Bar}(\text{Com}^{nu})$ is almost **perfect** in sSeq_R^{\vee} .

$$
\begin{array}{c}\n\mathsf{Alg}_{\mathcal{P}}(QC_{R}^{\vee}) \xleftarrow{\mathrm{Bar}} \mathsf{co} \mathsf{Alg}_{\mathrm{Bar}}(P)(QC_{R}^{\vee}) \xleftarrow{\mathrm{(-)}}^{\vee} \mathsf{Alg}_{\mathrm{KDP}^{d}(P)}(QC_{R}^{\vee})^{op} \\
\operatorname{adic} \left| \int_{F^{1}}^{F^{1}} \int_{C^{0}\mathrm{Bar}} \int_{C^{0}\mathrm{Bar}} \int_{C^{0}}^{F^{1}} \int_{C^{0}\mathrm{Bar}} \int_{C^{0}}^{F^{1}} \int_{C^{0}\mathrm{Bar}} \int_{C^{0}\mathrm
$$

Definition

 (1) Lie $^{\pi}_{R,\Delta}:=\text{KD}^{\text{pd}}(\text{\sf Com}^{\textit{nu}})$ is called the PD ∞ -operad of derived partition Lie algebra.

$$
\begin{array}{l}(2) \ \text{Filtered Chevalley-Eilenberg complex:}\\ \widetilde{\mathsf{CE}}: \mathsf{Alg}_{\mathsf{Lie}^{\pi}_{R,\Delta}}(\mathsf{QC}^{\vee}_R) \hookrightarrow \mathsf{Alg}_{\mathsf{Lie}^{\pi}_{R,\Delta}}(\mathsf{Fil}_{\leq -1}\,\mathsf{QC}^{\vee}_R) \rightarrow (\mathsf{DAlg}^{\mathsf{aug}}(\mathsf{Fil}_{\geq 1}\,\mathsf{QC}^{\vee}_R))^{\mathsf{op}}\end{array}
$$

Koszul duality of partition Lie algebras

Theorem

Let R be an eventually coconnective coherent SCR , then CE gives a fully faithful embedding

$$
\widetilde{\mathsf{CE}} : \mathsf{Lie}_{R,\Delta}^{\pi,\mathsf{dap}} \hookrightarrow \mathcal{D}_{R/R,b}^{\mathcal{F}\mathsf{ol},\mathsf{op}},
$$

the essential image is spanned by A such that $\mathrm{Gr}^1(A)$ is almost perfect over R.

Return to $T_{\text{naïve}}$

Fix $k \to R$ coherent SCR's s.t. $\mathbb{L}_{R/k}$ is almost perfect

$$
(\text{DAlg}_{k}^{pro-coh})_{/R} \xleftarrow{\cot_{k//R} \atop \leftarrow} \text{QC}^{\vee} \text{ee}_{R} \xleftarrow{(-)^{\vee}} (\text{QC}^{\vee}_{R})^{op}
$$

Observation: \bar{T} fits into the fibre sequence (tested on APerf $_{R}^{\vee}$)

$$
\mathsf{Lie}^{\pi}_{R,\Delta}(-) \to \bar{\mathcal{T}}(-) \to \bar{\mathcal{T}}(0) \simeq \mathbb{L}^\vee_{R/k}[1]
$$

KID KA KERKER E VOOR

since Lie $^{\pi}_{R,\Delta}$ is <mark>dually connective</mark> and **dually almost perfect**, thus by right-left extension, it gives rise to a s.c.p monad T acting on QC^\vee_R .

Partition Lie algebroid

Definition

LieAlgd $\pi_{R/k, \Delta} := \mathsf{Alg}_{\,\mathcal{T}}(\mathsf{QC}_R^\vee)$ is called the ∞ -category of partition Lie algebroids.

Rk. $\mathfrak{g} \in \mathsf{LieAlgd}_{R/k, \Delta}^{\pi}$ is roughly

$$
\mathbb{L}^\vee_{R/k}\to \mathfrak{h}\to \mathfrak{g}\to \mathbb{L}^\vee_{R/k}[1]
$$

Proposition.

\n
$$
\text{LieAlgd}_{R/k,\Delta}^{\pi,\text{Fil}} \xleftarrow{\quad C_{\text{Fil}}^{\pi}} (\mathcal{D}_{R/k}^{\text{Fil}})^{op}
$$
\n

\n\n $\text{colim} \int_{\text{const}}^{\text{const}} \int_{\text{Eul}}^{\text{const}} \mathcal{F}^0 \left(\int_{\text{adic}}^{\text{halic}} \text{adic}' \right)$ \n

\n\n $\text{LieAlgd}_{R/k,\Delta}^{\pi} \xleftarrow{\quad C^*} (\text{DAlg}(\text{QC}_k^{\vee})/R)^{op}$ \n

where $\operatorname{\it fib}\circ \mathfrak D_{\operatorname{\sf Fil}}(A)\simeq (\operatorname{\sf cot}_{k//R}(R)^\vee\to \operatorname{\sf cot}_{k//R}(A)^\vee).$

Main theorem

Theorem

Let $k \to R$ be coherent SCR's s.t. $\mathbb{L}_{R/k}$ is almost perfect, then $\widetilde{C}^*:=C^*_{\text{Fil}}\circ\text{const}$ induces a fully faithful embedding

$$
\widetilde{C}^*:\mathsf{LieAlgd}_{R/k,\Delta}^{\pi,\mathsf{dap}}\hookrightarrow(\mathcal{D}^{\mathcal{F}\mathsf{ol}}_{R/k,\mathsf{b}})^{\mathsf{op}},
$$

essential image spanned by A s.t. $\mathrm{Gr}^1(A)$ is almost perfect.

Theorem (Main)

Furtherly assume k is eventually coconnective,

$$
\mathit{Spec}^{nc} \circ \widetilde{C}^* : \mathsf{LieAlgd}_{R/k, \Delta}^{\pi, \mathsf{dap}} \hookrightarrow \mathcal{F}\mathit{ol}_{R/k}^{\pi}.
$$

KELK KØLK VELKEN EL 1990

Formal deformation

Definition

Let $k \to R$ be as before:

- (1) \mathcal{D}_R^{sm} : small derived algebras is the minimal $\subset \mathit{SCR}_{k//R}$ s.t.:
	- ▶ \mathcal{D}_R^{sm} contains sqz (M) for all $M \in \textsf{Coh}_{R,\geq 1}$;
	- ▶ for each each diagram $A \rightarrow \text{sqz}(M) \leftarrow R$ in \mathcal{D}_R^{sm} with $M \in \mathsf{Coh}_{R,\geq 1}$, the pullback $A \times_{\mathsf{sqz}(M)} R$ lies in $\mathcal{D}^{\mathsf{sm}}_R$ as well.

Formal deformation

Definition

Let $k \to R$ be as before:

- (1) \mathcal{D}_{R}^{sm} : small derived algebras is the minimal $\subset \mathit{SCR}_{k//R}$ s.t.:
	- ▶ \mathcal{D}_R^{sm} contains sqz (M) for all $M \in \textsf{Coh}_{R,\geq 1}$;
	- ▶ for each each diagram $A \rightarrow \text{sqz}(M) \leftarrow R$ in \mathcal{D}_R^{sm} with $M \in \mathsf{Coh}_{R,\geq 1}$, the pullback $A \times_{\mathsf{sqz}(M)} R$ lies in $\mathcal{D}^{\mathsf{sm}}_R$ as well.

(2) A formal moduli problem F over R (relative to k) is a functor $F: \mathcal{D}^{\mathsf{sm}}_R \to \mathcal{S}$ such that

- ▶ F sends the final object R to a contractible space $F(R) \simeq$ *;
- ▶ for each diagram $A \rightarrow \text{sqz}(M) \leftarrow R$ in \mathcal{D}_R^{sm} with $M \in \text{Coh}_{R, \geq 1}$, the pullback $A \times_{\text{SGL}(M)} R$ is taken to a pullback $F(A) \times_{F(\text{soz}(M))}$ * in S.

KORKAR KERKER SAGA

Formal leaf of inf.foliation

Proposition. For each $\mathfrak{g} \in \mathsf{LieAlgd}_{R/k,\Delta}^{\pi}$,

$$
MC(\mathfrak{g})(A) = \mathsf{Map}_{\mathsf{LieAlgd}^\pi_{R/k, \Delta}}(\mathfrak{D}(A), \mathfrak{g})
$$

defines a formal moduli problem.

For bounded below inf.foliation F , its formal leaf is defined as

$$
FL(\mathcal{F}) := MC(\operatorname{colim} \mathfrak{D}_{\mathsf{Fil}}(A))
$$

KELK KØLK VELKEN EL 1990

where A is its foliation-like algebra. Proposition. If $g \in \text{LieAlgd}_{R/k,\Delta}^{\pi,\text{Gap}}$, then $MC(g) \simeq FL(\text{Spec}^{nc} \circ \widetilde{C}^*(g)).$ Ex: Purely inseparable Galois Theory

Theorem (Brantner-Waldron)

Consider K/F a finite purely inseparable field extension in $charp > 0$. Then there is a cat equivalence bewteen

$$
{\begin{aligned}\{\text{intermediate fields } K \supset E \supset F, \text{ with morphism } \supset\}}\\ \Downarrow\\ \text{full subcategory } \mathcal{C} \subset \mathsf{LieAlgd}_{R/k,\Delta}^{\pi}\end{aligned}}
$$

KELK KØLK VELKEN EL 1990

where $\mathcal C$ is spanned by $\mathfrak g \to \mathbb{L}_{K/F}^\vee[1]$ s.t.

 $▶$ the anchor map $\pi_1(g) \to Der_F(K)$ is injective

$$
\blacktriangleright \pi_i = 0 \text{ for } i \neq 0, 1
$$

$$
\blacktriangleright \dim_K(\pi_0(\mathfrak{g})) = \dim_K(\pi_1(\mathfrak{g})) < +\infty
$$

Checklist of Infinitesimal derived foliation

Features:

- **►** a derived analogue of algebraic foliation **over any SCR**
- ▶ enjoy formal leaves described by formal moduli problems✓

- ▶ under some finiteness condition, equivalent to a sub- ∞ -category of **partition Lie algebroids**
- \blacktriangleright Frobenius kernel of \mathbb{G}_m is an interesting example
- Abbr: Inf.foliation for short.
- Tool: Refined Koszul duality.